Refine Your Search

Topic

Author

Search Results

Technical Paper

A Review of Monitoring Technologies for Trace Air Contaminants in the International Space Station

2004-07-19
2004-01-2339
NASA issued a Request For Information (RFI) to identify technologies that might be available to monitor a list of air pollutants in the ISS atmosphere. After NASA received responses to the RFI, an expert panel was assembled to hear presentations from 9 technology proponents. The goal of the panel was to identify technologies that might be suitable for replacement of the current Volatile Organics Analyzer (VOA) within several years. The panelists consisted of 8 experts in analytical chemistry without any links to NASA and 7 people with specific expertise because of their roles in NASA programs. Each technology was scored using a tool that enabled rating of many specific aspects of the technology on a 4-point system. The maturity of the technologies ranged from well-tested instrument packages that had been designed for space applications and were nearly ready for flight to technologies that were untested and speculative in nature.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2003 - 2004

2004-07-19
2004-01-2382
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between April 2003 and March 2004. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
Technical Paper

International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System Keep Out Zone On-Orbit Problems

2004-07-19
2004-01-2387
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system performance can be impacted by operations on ISS. This is especially important for the Temperature and Humidity Control (THC) and for the Fire Detection and Suppression (FDS) subsystems. It is also more important for Node 1 since it has become a convenient area for many crew tasks and for stowing hardware prior to Shuttle arrival. This paper will discuss the current requirements for ECLS keep out zones in Node 1; the issues with stowage in Node 1 during Increment 7 and how they impacted the keep out zone requirements; and the solution during Increment 7 and 8 for maintaining the keep out zones in Node 1.
Technical Paper

Summary of Resources for the International Space Station Environmental Control and Life Support System for Core Complete Modules

2004-07-19
2004-01-2386
The Core Complete Environmental Control and Life Support (ECLS) system for the International Space Station (ISS) will consist of components and subsystems in both the United States (U.S.) and International Partner elements which together will perform the functions of Temperature and Humidity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Fire Detection and Suppression (FDS), and Vacuum System (VS) for the station. Due to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems, beginning with estimates during the hardware development phase through measured actuals when flight hardware is built and delivered. A summary of resources consumed by the current and by the addition of future U.S.
Technical Paper

Requirements and Potential for Enhanced EVA Information Interfaces

2003-07-07
2003-01-2413
NASA has long recognized the advantages of providing improved information interfaces to EVA astronauts and has pursued this goal through a number of development programs over the past decade. None of these activities or parallel efforts in industry and academia has so far resulted in the development of an operational system to replace or augment the current extravehicular mobility unit (EMU) Display and Controls Module (DCM) display and cuff checklist. Recent advances in display, communications, and information processing technologies offer exciting new opportunities for EVA information interfaces that can better serve the needs of a variety of NASA missions. Hamilton Sundstrand Space Systems International (HSSSI) has been collaborating with Simon Fraser University and others on the NASA Haughton Mars Project and with researchers at the Massachusetts Institute of Technology (MIT), Boeing, and Symbol Technologies in investigating these possibilities.
Technical Paper

The Lithium Hydroxide Management Plan for Removing Carbon Dioxide from the Space Shuttle while Docked to the International Space Station

2003-07-07
2003-01-2491
The Lithium Hydroxide (LiOH) management plan to control carbon dioxide (CO2) for the Shuttle while docked to the International Space Station (ISS) reduces the mass and volume needed to be launched. For missions before Flight UF-1/STS-108, the Shuttle and ISS each removed their own CO2 during the docked time period. To control the CO2 level, the Shuttle used LiOH canisters and the ISS used the Vozdukh or the Carbon Dioxide Removal Assembly (CDRA) with the Vozdukh being the primary ISS device for CO2 removal. Analysis predicted that both the Shuttle and Station atmospheres could be controlled using the Station resources with only the Vozdukh and the CDRA. If the LiOH canisters were not needed for the CO2 control on the Shuttle during the docked periods, then the mass and volume from these LiOH canisters normally launched on the Shuttle could be replaced with other cargo.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2002 – 2003

2003-07-07
2003-01-2589
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between April 2002 and March 2003. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements with Node 3 just completing its final design review so that it can proceed towards manufacturing and the continued manufacturing of the regenerative ECLS equipment that will be integrated into Node 3.
Technical Paper

International Space Station Environmental Control and Life Support System On-Orbit Station Development Test Objective Status

2003-07-07
2003-01-2593
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the ECLS System On-Orbit Station Development Test Objective (SDTO) status from the start of assembly until the end of February 2003.
Technical Paper

Summary of Resources for the International Space Station Environmental Control and Life Support System

2003-07-07
2003-01-2596
The assembly complete Environmental Control and Life Support (ECLS) system for the International Space Station (ISS) will consist of components and subsystems in both the U.S. and International partner elements which together will perform the functions of Temperature and Humidity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Fire Detection and Suppression (FDS), and Vacuum System (VS) for the station. Due to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems, beginning with estimates during the hardware development phase through measured actuals when flight hardware is built and delivered. A summary of resources consumed by the current on-orbit U.S. ECLS system hardware is presented, including launch weight, average continuous and peak power loads, on-orbit volume and resupply logistics.
Technical Paper

The Food System for the International Space Station: The First Five Increments

2003-07-07
2003-01-2426
The International Space Station (ISS) has been continuously crewed for more than 2 years. One of the major systems for crew health, performance and psychological support is the food system. This paper documents the mechanics of implementation for the ISS food system, with emphasis on the U.S. portion of that system, and also provides some performance feedback received from the first 5 increment crews. Menu composition and planning, food stowage, on orbit preparation, shipments, and inventory control are also described.
Technical Paper

International Space Station Environmental Control And Life Support System Status: 2001-2002

2002-07-15
2002-01-2494
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between May 2001 and April 2002. The ISS continued permanent crew operations, with Phase 2 completion accomplished during this period. Work continued on the Phase 3 elements with Node 3 proceeding toward a final design review and the regenerative ECLS equipment proceeding into manufacturing.
Technical Paper

Toxicological Assessment of the International Space Station Atmosphere, Part 2

2001-07-09
2001-01-2396
Space-faring crews must have safe breathing air throughout their missions to ensure adequate performance and good health. Toxicological assessment of air quality depends on the standards that define acceptable air quality, measurements of pollutant levels during the flight, and reports from the crew on their in-flight perceptions of air quality. Air samples from ISS flights 2A.2a, 2A.2b, 3A, and 4A were analyzed for trace pollutants. On average the air during each flight was safe for human respiration. However, there were reports from the crew that they experienced a headache when in certain areas, and strong odors were reported from specific locations of the ISS complex. Inspection of air samples in these locations suggested that several of the solvent-type pollutants (e.g. ethyl acetate, xylenes, and n-butanol) were present in concentrations that would cause a strong odor to be perceived by some individuals.
Technical Paper

Early Design Decision for Space Station

2000-07-10
2000-01-2329
It is always interesting to reflect on why things are the way they are and how they got that way. When the configuration of the modules for the International Space Station are looked at how many people wonder why they have that specific configuration. This paper will give an overview of the process for configuration determination. Pictures of some concepts are included.
Technical Paper

A Study of Fabric Seam Failure under Biaxial Stress Loading

2000-07-10
2000-01-2254
Most of the studies conducted on the design of inflated fabric structures for space applications have focused on types of yarns and coating selection. The design of seams along with materials selection considerations is also crucial to the design of inflatable structures. This paper presents a pilot study of the modes of failure for fabrics with two selected sewn seams under biaxial stress loading. A literature review of sewn seam testing techniques reveals that conventional methods do not accurately simulate the biaxial stresses to which inflated fabrics are subjected. In this study, biaxial stresses are obtained by using a cylindrical pressure testing apparatus developed originally for testing seam design for an inflatable Lunar habitat. The unique features of the test method for sewn seams of fabrics by cylindrical pressure loading are described. Test data is presented, and the sensitivity of the test to changes is also discussed.
Technical Paper

Micrometeoroid Penetration Hazards Assessment for the Shuttle EMU

1999-07-12
1999-01-1963
Micrometeoroid and orbital debris (MMOD) penetration hazards have been a concern for the large number of EVA’s (Extravehicular Activities) expected during the assembly and operation of the International Space Station (ISS). Earlier studies have shown large uncertainties in estimated spacesuit penetration risks. This paper reports the results of recent tests and analyses that have significantly expanded the Shuttle EMU (Extravehicular Mobility Unit) hypervelocity penetration database and clarified our understanding of the associated risks. The results of testing have been used to develop improved estimates of the cumulative risk of penetration during EVA's through the first ten years after the beginning of ISS construction. These analyses have shown that the risks of MMOD penetration during EVA will be somewhat less than the risk of a critical penetration of the ISS itself over the same ten-year period.
Technical Paper

Development of an Increased Capability Battery for the EMU

1999-07-12
1999-01-1998
The Extravehicular Mobility Unit (EMU) used by astronauts during space walks is powered by an 11-cell, silver-zinc battery. The present battery is certified for 6 cycles with a minimum discharge requirement of 7 hours above 16.0 volts at a 3.8 Amp load. Its certified wet-life is 170 days. Operational requirements for the International Space Station (ISS) led to a design capable of 32 cycles over a 425 day wet-life. Other battery parameters including capacity, rate capability, weight, volume, safety and the need for continuing compatibility with the EMU and the Space Shuttle charger dictate that the new battery will also be silver-zinc.
Technical Paper

The Lunar-Mars Life Support Test Project Phase III 90-day Test: The Crew Perspective

1998-07-13
981702
The Lunar-Mars Life Support Test Project (LMLSTP) Phase III test examined the use of biological and physicochemical life support technologies for the recovery of potable water from waste water, the regeneration of breathable air, and the maintenance of a shirt-sleeve environment for a crew of four persons for 91 days. This represents the longest duration ground-test of life support systems with humans performed in the United States. This paper will describe the test from the inside viewpoint, concentrating on three major areas: maintenance and repair of life support elements, the scientific projects performed primarily in support of the International Space Station, and numerous activities in the areas of public affairs and education outreach.
Technical Paper

Space Shuttle Launch Entry Suit Thermal Performance Evaluation

1993-07-01
932297
Comments of the Space Shuttle crew indicate that the Launch Entry Suit (LES) may provide inadequate cooling before launch and after reentry. During these periods some crewmembers experienced thermal discomfort induced by localized cabin heating, middeck experiments, and crewmembers' body heat and humidity. The NASA Johnson Space Center(JSC) Crew and Thermal System Division (CTSD) executed a two phase study, analysis and testing, to investigate this problem. The analysis phase used a computer model of the LES to study the transient heat dissipation and temperature response under the various Space Shuttle flight cabin environments. After the completion of the analysis, the testing phase was conducted to collect the engineering data in order to validate the analysis results. Due to the constraint of the test facility, the test was conducted on the air cooled techniques only. This paper presents the analytical model, its solution and an evaluation and summary of the test results.
Technical Paper

A Helmet Mounted Display Demonstration unit for a Space Station Application

1989-07-01
891583
An advanced development helmet mounted display (HMD) was designed and fabricated under NASA-Johnson Space Center (NASA/JSC) contract, NAS 9-17543, by Hamilton Standard Division of United Technologies, Windsor Locks, CT. The work was initiated in December 1985 and culminated in June 1988 with the delivery of an extravehicular mobility unit (EMU) HMD demonstration unit as an alternative to the current low-resolution, chest-mounted display and cuff-mounted checklists. Important design goals achieved with this HMD include the use of transmissive liquid crystal display (LCD) image sources with fairly high resolution (i.e., text, graphics, and video compatible), binocular viewing with total image overlap, virtual image projection, low profile packaging, low power design, and demonstration of voice control of the HMD data.
Technical Paper

Life Sciences Space Biology Project Planning

1988-07-01
881075
Life sciences research facilities planned for the U.S. Space Station will accommodate life sciences investigations addressing the influence of microgravity on living organisms. Current projects within the Life Sciences Space Station Program (LSSSP), the Life Sciences Space Biology (LSSB) and Extended Duration Crew Operations (EDCO) projects, will explore the physiological, clinical, and sociological implications of long duration space flight on humans and the influence of microgravity on other biological organisms/systems. Initially, the primary research will emphasize certifying man for routine 180-day stays on the Space Station. Operational crew rotations of 180 days or more will help reduce Space Station operational costs and minimize the number of Space Transportation System (STS) shuttle flights required to support Space Station.
X